O-Atom Transfer to Fe_n^+ Clusters (n = 2-10) from O_2 , N_2O and CO_2 : "Microoxides of Iron"**

Oliver Gehret and Manfred P. Irion*

Abstract: We report on the gas phase reactions of small Fe_n^+ clusters (n = 2-10) with O_2 , N_2O and CO_2 in an FT-ICR mass spectrometer. Under our experimental conditions, clusters of all sizes reacted readily with O_2 and all but the dimer reacted with N_2O . Only the smallest Fe_n^+ clusters (n = 2-4) appeared to activate CO_2 . For all X-O molecules $(X = O, N_2, CO)$, reaction pathways were observed that include the transfer of O atoms. In addition, the reactions with O_2 and N_2O

were accompanied by the loss of one or two Fe atoms. Thermochemical considerations based upon the well-known X-O bond energies were used to calculate Fe_n-O⁺ bond dissociation energies (BDEs) for sizes n = 2-6; these amount to roughly

Keywords

clusters • gas-phase chemistry • ionmolecule reactions • iron complexes • mass spectrometry 550 kJ mol⁻¹ and thus are considerably higher than the BDE of the Fe-O⁺ ion. All oxidation reactions of the Fe_n⁺ clusters (n = 2-6) studied in more detail were terminated by products of Fe_xO_x⁺ stoichiometry (x = 1-4). These "microoxides of iron" are not able to activate any further X-O bonds. Secondary reactions of Fe_xO_x⁺ clusters with C₆H₆, C₂H₄ and NH₃ were investigated for two selected sizes (x = 2, 3) and compared with reactions of the naked Fe_n⁺ clusters.

Introduction

Metal clusters are characterised by a high proportion of surface atoms. Therefore, the reactivity of metal clusters towards different molecules should provide information about surfaces on a microscopic scale.

To date, numerous investigations of the gas-phase chemistry of bare transition-metal clusters have been carried out. In most cases, reactions with simple hydrocarbons have been studied, which exhibited in part C-C and C-H bond activation. The observed reaction pathways often consist of several sequential steps where the addition of a hydrocarbon ligand may be accompanied by the loss of one or more H_2 molecules. An interesting aspect is the size selectivity shown by many reaction systems. One cluster size or one particular cluster ligand stoichiometry may possess properties that neighbouring sizes do not.

Compared with the reactions with hydrocarbons, there have been few efforts to study the oxidation of small metal clusters. In the case of atomic transition-metal ion chemistry, C-C and C-H bond activation by transition-metal mediated oxidation of hydrocarbons is the subject of current investigations.^[2] It should be interesting to check how efficient transition-metal oxide clusters are in activating C-C and C-H bonds. For the Group VIII transition metals, the reactions of small $Fe_nCo_m^+$ clusters, $(n+m) \le 3$, with C_2H_4O and O_2 in the gas phase have been investigated by Jacobson and Freiser using FT-ICR mass

Previous investigations in our laboratory had proved Fe₄ to be the outstanding cluster in the reactions of Fe_n⁺ clusters $(n \le 13)$ with several reactants. Fe₄ was found to be the only cluster capable of dehydrogenation of NH₃^[7] or C₆H₆^[8] and of cyclotrimerisation of ethyne ligands to benzene.[9] Therefore, the following work is motivated by the question of whether Fe₄⁺ will also show this special reactivity towards oxidising reagents. The earlier work on Fe_n^+ cluster oxidation was limited to sizes $n \le 3$ and to O_2 as a reactant. [3.4] We studied the reactions of small Fe_n⁺ clusters in the size range n = 2-10 with O₂, N₂O and CO₂. Thermochemical considerations allow the bracketing of dissociation energies for the Fe_n-O^+ bonds (n=2-6). Although different reaction pathways are observed for the three X-O molecules, they all lead to final products of the same stoichiometry $Fe_xO_x^+$ (x = 2-4), which are unable to activate any further X-O bonds. Finally, mass-selected Fe_xO_x⁺ ions (x = 2, 3) are exposed to C_6H_6 , C_2H_4 and NH_3 .

spectrometry.^[3] Loh et al. studied the reactions of Fe_n⁺ clusters (n=1-3) with O₂ in a guided ion beam instrument. The reaction cross-sections measured as a function of kinetic energy were presented together with the thermochemistry.^[4] The chemistry of size-selected Co_n⁺ clusters (n=2-9) with O₂ was studied by Guo et al. in a selected ion drift tube arrangement.^[5] This work contains product distributions for the sequential oxidation reactions, as well as absolute reaction rates as a function of cluster size. Recently, Andersson et al. investigated the oxidation of neutral Fe_n, Co_n and Cu_n clusters (n=10-60) in a molecular beam experiment.^[6] Sticking probabilities S of O₂ were obtained as a function of cluster size. Fe_n and Co_n showed a comparable size dependence with S less than 0.2 for the smallest clusters. S increased almost monotonically up to n=25, where it reached a constant value of 0.7 for Fe_n and 1.0 for Co_n.

^[*] Dr. M. P. Irion, Dipl.-Ing. O. Gehret Institut für Physikalische Chemie, Technische Hochschule Darmstadt Petersenstrasse 20, D-64287 Darmstadt (Germany) Fax: Int. code + (6151)16-6024

^[**] This work is part of O. Gehret's dissertation (Darmstadt, D17).

Results and Discussion

Reaction Rates: The mass spectrum of Fe_n^+ clusters (n=3-19) that have been sputtered, trapped and thermalised in our experimental setup is reproduced in ref. [10]. When the complete size distribution is exposed to one of the three X-O reactants, a multitude of products appears as a function of storage time. To obtain a clear relationship between reactants and products, we select the clusters before reaction according to their size.

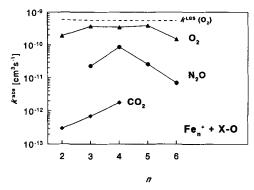


Fig. 1. Absolute rate constants for the reactions of Fe_n⁺ clusters (n = 2-6) with O₂, N₂O and CO₂ as a function of size.

Figure 1 contains the absolute rates for the reaction of Fe, clusters (n = 2-6) with the X-O molecules as a function of size, derived from the disappearance of the naked cluster ions. As a reference, the collision rate calculated from Langevin theory^[11] is plotted for the reaction of Fe_n⁺ with O₂. From Figure 1, it is evident that the reaction rates strictly follow the order $k(O_2) > k(N_2O) > k(CO_2)$. With CO_2 , reactions have been observed only for Fe_n^+ clusters in the size range n = 2-4. All sizes n>4 appear inert under our experimental conditions $(k < 10^{-13} \text{ cm}^3 \text{ s}^{-1})$. However, clusters of all sizes react readily with O_2 , and only Fe_2^+ appears inert towards N_2O . In all three reactions the rate increases from n = 2 to n = 4 for any given X-O molecule and passes a maximum at the size of the tetramer. This size dependence is least distinct for the fastest reaction (with O₂) and most distinct for the slowest reaction (with CO₂).

The reactions of Fe_n⁺ clusters for n > 6 were investigated up to n = 10. When the whole size distribution was exposed to O_2 or N_2O , several oxide ions Fe_nO⁺ (n > 5) did appear. However, it was not possible to monitor these reactions in detail because of the complexity and rapidity of consecutive reactions. For example, Fe₁₀⁺ stored in the presence of N_2O yields Fe_nO_m⁺ ions with n = 3-10 and m = 1-4. We have not measured reaction rates for n > 6, but we estimate them to approach the collision rate gradually with increasing size, as has been observed in other reaction systems.^[1,19]

Reaction pathways: Figure 2 shows the pathways for the reactions of Fe_n^+ clusters (n=2-6) with O_2 . Clusters larger than Fe_6^+ are not included for the reasons pointed out above. The monomer Fe^+ has already been found to be inert by Kappes and Staley. [12]

For all clusters with n>3, the addition of O_2 is accompanied in the first step by the loss of one or two Fe atoms. In the case of Fe₅⁺ and Fe₆⁺, the respective branching ratios amount to approximately 50%, as derived from the intermediates Fe_(n-1) O_2^+ and Fe_(n-2) O_2^+ . The subsequent reaction steps of Fe₅ O_2^+ and Fe₄ O_2^+ lead to Fe₄ O_4^+ and Fe₃ O_3^+ , respectively. The

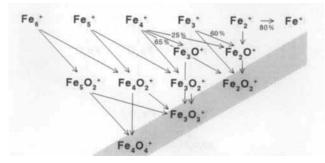


Fig. 2. Pathways observed for the reaction $Fe_n^+ + O_2$ (n = 2-6). If branching ratios are not indicated in percentages, a 1:1 ratio was found.

latter ions are found to be inert towards O_2 . In the reaction with O_2 , Fe_4^+ forms the products Fe_2O^+ (25%), $Fe_2O_2^+$ (65%), Fe_3O^+ (5%) and Fe_3O_2 (5%). In a second step, Fe_2O^+ forms $Fe_2O_2^+$, which does not react any further with O_2 . Both Fe_3O^+ and $Fe_3O_2^+$ continue to react, yielding $Fe_3O_3^+$, which had already proved inert. Product ions Fe_2O^+ (60%) and $Fe_2O_2^+$ (40%) are also obtained through reaction of Fe_3^+ with O_2 . In the presence of O_2 , Fe_2^+ yields mainly Fe^+ (80%) and some Fe_2O^+ (20%), which completes the reaction by forming inert $Fe_2O_2^+$.

Thus, when Fe_n^+ clusters (n=2-6) are stored in the presence of O_2 , they react to give the stable final products $\operatorname{Fe}_2O_2^+$, $\operatorname{Fe}_3O_3^+$ and $\operatorname{Fe}_4O_4^+$. Those ions that may form through different pathways are all inert towards further reaction with O_2 . Beyond that, they are even inert towards every other X-O molecule examined. In the following, we will designate these $\operatorname{Fe}_xO_x^+$ ions as "microoxides of iron".

Figure 3 contains the pathways for the reactions of Fe_n^+ (n = 1-6) with N_2O . Fe_2^+ appears inert, while for larger clusters almost every observed reaction step can be described as an O-atom transfer from N_2O inducing the loss of a single Fe atom

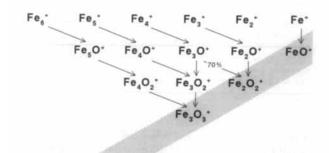


Fig. 3. Pathways observed for the reaction $Fe_n^+ + N_2O$ (n = 1-6). If branching ratios are not indicated in percentages, a 1:1 ratio was found.

and of N_2 . Fe_6^+ clusters, for example, form $Fe_3O_3^+$ in three such consecutive steps. Exceptions to that rule are the ions Fe_3O^+ , $Fe_3O_2^+$ and Fe_2O^+ , which react with N_2O like the monomer $Fe^{+[12]}$ (by inducing an O-atom transfer without loss of an Fe atom). Fe_3O^+ reacts to form $Fe_2O_2^+$ (70%) and $Fe_3O_2^+$ (30%). $Fe_3O_2^+$ and Fe_2O^+ continue to react until $Fe_3O_3^+$ and $Fe_2O_2^+$ are formed, respectively. These exclusive O-atom transfers seem to occur when $Fe_xO_x^+$ stoichiometry (x=1-3) may be achieved. Thus, a product ion containing fewer iron than oxygen atoms is never observed.

The pathways for the reactions of Fe_n^+ with CO_2 are displayed in Figure 4. We observed consecutive reactions that consist of transfers of a single O atom to the Fe_n^+ cluster accompanied by the loss of CO. This stepwise buildup of oxides is terminated by $Fe_2O_2^+$ and $Fe_3O_3^+$ for Fe_2^+ and Fe_3^+ , respectively. In the case of

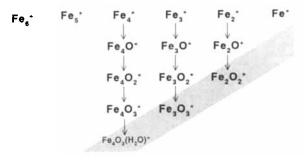
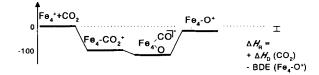


Fig. 4. Pathways observed for the reaction $Fe_n^+ + CO_2$ (n = 2-4).

 Fe_4^+ , the fourth ligand added under our experimental conditions was H_2O , resulting from a trace of water in the background vacuum.

From the results presented, we conclude that the patterns for the reactions of the Fe_n⁺ clusters (n = 2-6) with any X-O molecule are characterised by a special type of reaction that depends strongly on the nature of the X-O reaction partner. Those characteristic types of reaction are as follows: in the case of O₂, two O atoms are transferred to the Fe_n⁺ clusters, which lose up to two Fe atoms in the process. With N₂O, a single O-atom transfer occurs accompanied by the loss of one Fe atom and the liberation of an N₂ molecule. For CO₂, an O atom is simply transferred and CO is set free. These findings can now be discussed in terms of thermochemistry.

Thermochemical considerations: Since the reactivity of Fe_n⁺ clusters towards X-O appears to follow the order $O_2 > N_2O > CO_2$, we attempt an explanation based on the dissociation enthalpies of the studied X-O bonds, which are contained in Table 1.^[13]


Table 1. X-O bond dissociation enthalpies $\Delta H_{\rm D}$ (kJ mol⁻¹) for X-O molecules [13].

$XO \rightarrow X + O$	$\Delta H_{ extsf{D}}$		
$O_2 \rightarrow 2O$	+ 497.3		
$N_2O \rightarrow N_2 + O$	+166.7		
$CO_2 \rightarrow CO + O$	+ 531.7		

The table suggests an order of enthalpies $\Delta H_{\rm D}({\rm CO_2}) > \Delta H_{\rm D}({\rm O_2}) > \Delta H_{\rm D}({\rm N_2O})$ that differs from the observed reactivity series. In order to gain a more thorough understanding, we will discuss qualitative potential energy surfaces for the reactions ${\rm Fe_4^+} + {\rm X-O}$ that are compiled in Figure 5. In this discussion, we consider for ${\rm O_2}$ the reaction path that leads to the main product ${\rm Fe_2O_2^+}$, while for ${\rm N_2O}$ or ${\rm CO_2}$ we consider the first reaction in the series, which leads to ${\rm Fe_3O^+}$ and ${\rm Fe_4O^+}$, respectively.

Generally, a chemical reaction starts with the collision of both reaction partners to form a collision complex. Under our experimental conditions, the collision frequency of the ions with the background gas was of the order of 1 s⁻¹. Therefore, the adsorption energy liberated in the obtained collision complex will not be quickly dissipated through collisions but will be distributed statistically over the degrees of freedom. Now, the excited collision complex may dissociate back into its components or proceed further on the reaction coordinate to be stabilised as a final product. The ratio of the experimental product formation rate to the theoretical collision rate^[11] is usually termed reaction efficiency.

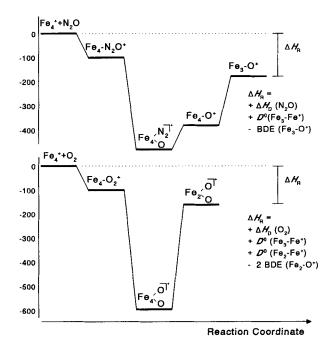


Fig. 5. Qualitative potential energy surfaces for

top: $Fe_4^+ + CO_2 \rightarrow Fe_4O^+ + CO$ centre: $Fe_4^+ + N_2O \rightarrow Fe_3O^+ + Fe + N_2$ bottom: $Fe_4^+ + O_2 \rightarrow Fe_2O_2^+ + Fe_2$

where ΔH_R is the reaction enthalpy of the net reaction and ΔH_D is the dissociation enthalpy of the X-O bond.

We are only able to detect the intensities of the longer-lived ions, namely of reactant and product ions. The lifetime of all intermediate ions along the reaction coordinate is about $0.1-1~\mu s$ and is by far too short for ICR detection. A recent example of a detailed investigation of a potential energy surface in transition-metal ion chemistry is given in ref. [14].

Thermalised ions undergo only exothermic reactions under gas-phase conditions like those we applied. In the following, we use the exothermicity of those reactions that occurred to derive lower limits for Fe_n-O⁺ bond energies from our ICR measurements. A nonoccurring reaction may either be endothermic or be characterised by reaction barriers. Only if we assume the absence of such barriers may we use the nonoccurrence of certain reactions to derive upper limits for the desired bond energies.

In the reaction between Fe₄⁺ and CO₂, a [Fe₄-CO₂]⁺ collision complex is at first formed. CO₂ is activated by its binding with Fe₄⁺, and one CO double bond is loosened. The obtained complex [Fe₄(CO)(O)]⁺ then releases CO, decomposing to the final product Fe₄O⁺. Therefore, it can be deduced from Figure 5 that the unknown Fe₄-O⁺ BDE must be larger than or equal to 531.7 kJ mol⁻¹, the C-O dissociation enthalpy of CO₂. [13] To determine the upper limit of the BDE, we have to include the bond dissociation energies of the Fe_n⁺ clusters. Table 2 contains the energies $D^0(\text{Fe}_{n-1}^+\text{-Fe})$ for the loss of one Fe atom, measured by Lian et al. through CID for n = 2-9, [15]

Microoxides of Iron 598–603

Table 2. Bond dissociation energies D^0 (kJ mol⁻¹) for Fe_n⁺ clusters (n = 2-9) [15].

Cluster	$D^0(\operatorname{Fe}_{n-1}^+-\operatorname{Fe})$	$D^{0}(\mathrm{Fe}_{n-1}^{+}-\mathrm{Fe})+D^{0}(\mathrm{Fe}_{n-2}^{+}-\mathrm{Fe})$		
Fe ⁺	264.4 ± 9.6	_		
Fe ₃ ⁺	161.1 ± 11.6	425.5 ± 21.2		
Fe ₄ ⁺	203.6 ± 19.3	364.7 ± 30.9		
Fe ₅ ⁺	244.1 ± 22.2	447.7 ± 41.5		
Fe ₆ ⁺	295.2 ± 24.1	539.3 ± 46.3		
Fe ₇ ⁺	300.1 ± 26.1	595.3 ± 50.2		
Fe ₈ ⁺	231.6 ± 26.1	531.7 ± 52.2		
Fe ₉ ⁺	260.5 ± 31.8	492.1 ± 57.9		

and the energies $D^0(\mathrm{Fe}_{n-1}^+ - \mathrm{Fe}) + D^0(\mathrm{Fe}_{n-2}^+ - \mathrm{Fe})$ for the loss of two Fe atoms calculated therefrom. In this case, we use the process $\mathrm{Fe}_4^+ \to \mathrm{Fe}_4 - \mathrm{O}^+$ and the nonappearance of $\mathrm{Fe}_5^+ \to \mathrm{Fe}_4 - \mathrm{O}^+ + \mathrm{Fe}$ to bracket the BDE ($\mathrm{Fe}_4 - \mathrm{O}^+$) as $\Delta H_D(\mathrm{CO}_2) + D^0(\mathrm{Fe}_4 - \mathrm{Fe}^+) > \mathrm{BDE}$ ($\mathrm{Fe}_4 - \mathrm{O}^+ > \Delta H_D(\mathrm{CO}_2)$). Thus, we obtain 776>BDE ($\mathrm{Fe}_4 - \mathrm{O}^+ > 531 \mathrm{\ kJ\ mol}^{-1}$.

Fe₄⁺ reacts with N₂O by forming the collision complex [Fe₄–N₂O]⁺ in the first step (Fig. 5). Here, the Fe₄⁺ cluster activates the N₂–O bond, producing the intermediate [Fe₄(N₂)(O)]⁺. The net energy liberated in this process is provided by the emerging Fe₄–O⁺ bond, diminished by the dissociation energy of N₂O (approximately 170 kJ mol^{-1[13]}). In the next step, N₂ loss occurs leading to [Fe₄–O]⁺. The internal energy of the resulting [Fe₄O]⁺ ion is large enough to expel a single Fe atom. Obviously, however, it is not large enough to initiate the loss of a second Fe atom. The final product detected is Fe₃O⁺. We use the process Fe₄⁺ \rightarrow Fe₃O⁺ + Fe in the reaction with N₂O and the nonappearance of Fe₃O⁺ in the reaction of Fe₅⁺ to bracket the BDE(Fe₃–O⁺) as $\Delta H_{\rm D}({\rm N}_2{\rm O}) + D^0({\rm Fe}_4-{\rm Fe}^+) + D^0({\rm Fe}_3-{\rm Fe}^+) > {\rm BDE}({\rm Fe}_3-{\rm O}^+) > {\Delta H_{\rm D}({\rm N}_2{\rm O})} + D^0({\rm Fe}_3-{\rm Fe}^+)$. Thus, we obtain 615 > BDE(Fe₃–O⁺) > 370 kJ mol⁻¹.

The reaction of Fe₄⁺ with O₂ starts with the formation of the adduct $[Fe_4-O_2]^+$ (Fig. 5). The Fe₄⁺ cluster activates the molecule that is bound dissociatively. The internal energy of the resulting $[Fe_4(O)_2]^+$ complex is high enough to release up to two Fe atoms. From the process $Fe_4^+ + O_2 \rightarrow Fe_2O_2^+ + 2$ Fe, we obtain a lower limit for the average dissociation energy of the two Fe_2-O^+ bonds through $2 \times BDE(Fe_2-O^+) > D^0(Fe_3-Fe^+) + D^0(Fe_2-Fe^+) + \Delta H_D(O_2)$, so that $BDE(Fe_2-O^+) > 431$ kJ mol⁻¹. Furthermore, an upper limit may be derived from the nonoccurrence of the loss of three Fe atoms through $2 \times BDE(Fe_2-O^+) > D^0(Fe_4-Fe^+) + D^0(Fe_3-Fe^+) + D^0(Fe_2-Fe^+) + \Delta H_D(O_2)$. Obviously, this approach yields only average $BDE(Fe_n-O^+)$ values. The true bond dissociation energies will deviate from this value because they are certainly not identical for both oxygen atoms.

In a procedure similar to that applied for the Fe₄⁺ clusters, BDE limits can also be derived for all other cluster sizes. Two reactions must be taken into account beside those discussed above. Firstly, the absence of the reaction $Fe_2^+ + N_2O \rightarrow$ $Fe_2O^+ + N_2$ would require $BDE(Fe_2-O^+) < \Delta H_D(N_2O) =$ 166.6 kJ mol⁻¹. Such a value would not allow the process $Fe_3^+ + N_2O \rightarrow Fe_2O^+ + Fe + N_2$ to occur. In this case, we can directly infer the existence of a reaction barrier. Armentrout et al. observed a kinetic barrier for oxygen abstraction from N₂O by monomer transition-metal ions and attributed it to spin multiplicity differences. [16] Secondly, the oxygen atom abstraction of Fe₂⁺ from O₂ yields BDE(Fe₂-O⁺)> $\Delta H_D(O_2)$ = 497.3 kJ mol⁻¹. The BDE limits for Fe_n -O⁺ ions (n = 2-6) we have obtained are summarised in Table 3. The highest of our lower limits and the lowest of our upper limits are plotted at each cluster size in Figure 6, which also contains the BDEs for $Fe_n - O^+$ ions (n = 1-3) given by Loh et al. [4,17]

Table 3. ICR bracketing limits for Fe_n-O^+ bond dissociation energies (n=2-6) in kJ mol⁻¹. Numbers in bold indicate the highest lower limit and the lowest upper limit at a given cluster size.

•	O ₂ low	O2 high	N ₂ O low	N ₂ O high	CO2 low	CO ₂ high
Fe ₂ -O ⁺	497	554	327	532	531	693
Fe ₃ -O ⁺	472	621	370	615	531	736
Fe ₄ -O ⁺	518	669	410	706	531	776
Fe ₅ -O ⁺	546	663	461	762	_	532
Fe ₆ -O ⁺	514	645	466	699	-	532

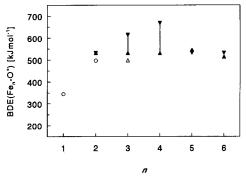


Fig. 6. Dissociation energies for the Fe_n-O⁺ bond (n = 1-6) as a function of cluster size from ICR bracketing: lower (upper) limits represented by filled triangles with top up (down). Values measured by Loh et al. shown in comparison [4,17]: circles; lower limit for n = 3 is represented by an open triangle.

From the absolute reaction rates of all Fe_n^+ clusters (n = 2-6), the tetramer Fe₄ appears to be the most reactive cluster. This size effect is almost negligible for the reaction with O2, where Fe₃⁺ and Fe₅⁺ react as fast as Fe₄⁺. In the reactions with N₂O or CO₂, which are altogether slower, Fe₄ shows the highest rate over the whole size range. For Fe₅⁺ and larger clusters, the rate of the reaction with CO₂ decreases below the detectable signalto-noise level of our instrument. The uniqueness of the iron tetramer with respect to the rates is not so evident in the reaction pathways. Only with CO₂ is the tetramer unequivocally the largest reactive cluster. With N₂O and O₂, the pathways for Fe₄⁺ do not differ from those shown by the other cluster sizes. The Fe_n-O⁺ BDEs derived from the observed reaction pathways seem to drop slightly for n > 4, following the suppressed reactivity of Fe₅⁺ and Fe₆⁺ towards CO₂. However, the upper limits determined for the BDEs of Fe₅-O⁺ and Fe₆-O⁺ are uncertain, since the thermochemical thresholds may be shifted by barriers, as seen for the reaction of Fe₂⁺ with N₂O. Taking this into account, we conclude that for $n \ge 2$ the average $Fe_n - O^+$ BDEs approach a nearly constant value without exhibiting a special size dependence.

The fact that $Fe_4O_4^+$ appears to be the largest $Fe_xO_x^+$ cluster does not suggest a kind of magic cluster size. The nonappearance of an $Fe_5O_5^+$ ion may be a result of the necessity for five consecutive reaction steps from Fe_{10}^+ in the reaction with N_2O . If an $Fe_5O_5^+$ ion resulted, it might have dissappeared below our signal-to-noise level. Even the $Fe_4O_4^+$ intensities we obtained in our mass spectra were so small as to render any further investigation of that species impossible.

Any further reactions of the oxidised clusters with X–O molecules do not differ significantly from those of the naked clusters. Generally, the consecutive reactions are driven by the tendency to reach Fe_xO_x⁺ stoichiometry. For example, in the reaction of Fe₅O₂⁺ with O₂ (Fig. 2), formation of the products Fe₄O₄⁺ and Fe₃O₃⁺ shows that the liberated bond energy is sufficient to release an Fe atom, or an Fe atom together with an FeO molecule. The spontaneity of the processes Fe₃O₂⁺ + O₂ \rightarrow Fe₃O₃⁺ + O and Fe₂O⁺ + O₂ \rightarrow Fe₂O₂⁺ + O suggests the for-

mation of Fe_xO_x-O⁺ bonds (x=2, 3) to be endothermic or impeded by significant reaction barriers. The intermediate ions Fe_nO_m⁺ (n=2-4; m=0-3) in the reaction sequence with CO₂ (Fig. 4) must have BDEs>531 kJ mol⁻¹ for every additional oxygen atom up to Fe_xO_x⁺ (x=2-4).

Jacobson and Freiser also obtained $Fe_2O_2^+$, however, from the reaction of Fe_2^+ with ethylene oxide. [3] They generated Fe_2^+ clusters by reacting laser-desorbed Fe^+ ions with $Fe(CO)_5$. In the reaction of Fe_2^+ with O_2 , they also observed the products $Fe^+ + FeO_2$ to be favoured over $Fe_2O^+ + O$. Interestingly, in contrast to our studies, Fe_2^+ appeared inert towards CO_2 , consistent with the bond dissociation energy $D^0(Fe_2-O^+) = 496.9 \pm 4.8$ kJ mol⁻¹ that was measured two years later by Armentrout and coworkers. [4] This may again provoke a discussion about the temperature of our metal clusters generated by sputtering.

We have already shown that in our experimental arrangement, sputtered metal cluster ions are thermalised to approximately room temperature.[18] A comparison of our recent results with those of Loh et al. supports this assertion.^[4] They investigated the cross-sections for the oxidation of Fe_n⁺ clusters (n = 1-3) by O_2 between 0 and about 15 eV of kinetic energy. From a comparison of their product ion ratios with ours, we deduce that the internal energy of our cluster ions is clearly below 0.4 eV relative to their energetic scale. Furthermore, our efficiencies for the reactions of Fe₂⁺ and Fe₃⁺ with O₂ equal within error limits those given in ref. [4]. Thus, we conclude that the sputtered clusters are almost completely thermalised under our experimental conditions. Nevertheless, the observed reactivity of Fe₂⁺ towards CO₂ contradicts the assumption of a completely thermalised cluster ion population. Apparently, a small fraction of ions remains in excited states although collisional cooling does occur with pulsed-in Ne, background Xe and CO₂ itself. We observe a reaction efficiency of roughly 0.05%, which tells us that excited states may constitute at least 0.05% of the Fe₂⁺ ions, since the reaction rate of the excited ions can be less than the theoretical rate.[11] However, this fraction should not exceed about 1% of the total ion population, since otherwise deviations from pseudo-first-order kinetics would be clearly visible. We have never observed such deviations for the reactions of Fe_n^+ clusters with O_2 or N_2O . Finally, the question remains whether the reactions of Fe₃⁺ and Fe₄⁺ are also influenced by excited-state chemistry. For metal clusters, the growing density of states with increasing cluster size should facilitate collisional cooling.[17] Thus, at least for Fe₄⁺ clusters, hot ion chemistry does not play a role in the reactions with CO₂. Moreover it appears negligible for all other observed reactions of Fe, clusters with O2 or N2O.

Secondary reactions of $Fe_xO_x^+$ ions (x=2,3): In the following, we will discuss the reactions of the two oxidised iron cluster species with C_6H_6 , C_2H_4 and NH_3 . We will also compare the findings for these "microoxides" with the results obtained previously for the naked Fe_n^+ clusters.

The $Fe_xO_x^+$ ions (x=2,3) were generated through the reaction of size-selected Fe_4^+ clusters with N_2O , since this was the most efficient method of their production. As displayed in Figure 4, this reaction yields about 70% of $Fe_2O_2^+$ and 30% of $Fe_3O_3^+$. Unfortunately, we cannot isolate the $Fe_4O_4^+$ ion and study its further reactions, since its intensity is insufficient, even though it appears as a final product in the oxidation of Fe_5^+ or Fe_6^+ with O_2 .

 $Fe_xO_x^+ + C_6H_6$: Benzene is merely physisorbed by $Fe_xO_x^+$ clusters (x = 2, 3). C-H bond activation that would lead to dehy-

drogenation does not occur. During our experiments, we never observed the attachment of more than one benzene ligand to the oxide ions. Analogously, naked Fe_4^+ clusters do generally physisorb intact C_6H_6 as well. Only Fe_4^+ is able to activate the C-H bonds of benzene and dehydrogenate C_6H_6 .^[8] Thus in a first step, $Fe_4C_6H_4^+$ (65%) is formed beside $Fe_4C_6H_6^+$ (35%). After that, the Fe_4^+ clusters continue to react until they have attached up to four C_6 ligands. The upper part of Figure 7 summarises the pathways and rates for the reactions of the oxidised as well as of the naked iron clusters with benzene.

 $\text{Fe}_{\mathbf{x}}\mathbf{O}_{\mathbf{x}}^{+} + \text{C}_{2}\text{H}_{4}$: Only $\text{Fe}_{2}\text{O}_{2}^{+}$ is found to react with ethene. In a dehydrogenation that occurs up to two times $\text{Fe}_{2}\text{O}_{2}(\text{C}_{2}\text{H}_{2})_{2}^{+}$ is formed. The occurrence of this reaction is surprising, since of all naked Fe_{n}^{+} clusters with $n \leq 13$ we have found only Fe_{4}^{+} and Fe_{5}^{+} to react with C_{2}H_{4} in a similar way. The reaction rates for Fe_{4}^{+} and $\text{Fe}_{2}\text{O}_{2}^{+}$ are both comparable and about one order of magnitude larger than the rate for Fe_{5}^{+} . Whereas Fe_{4}^{+} binds up to four, Fe_{5}^{+} binds only up to two C_{2}H_{2} ligands. The rates for the reactions with ethene are summarised in the lower part of Figure 7. The ion $\text{Fe}_{3}\text{O}_{3}^{+}$ proved unreactive towards ethene.

Fig. 7. Reactions observed for $Fe_xO_x^+$ (x = 2, 3) and Fe_4^+ clusters with C_6H_6 and with C_2H_4 . Numerical values represent absolute reaction rates in 10^{-10} cm³ s⁻¹.

 $Fe_xO_x^+ + NH_3$: When Fe_4^+ is stored in the presence of approximately equal parts of N_2O and NH_3 , the products shown in the reaction scheme in Figure 8 are obtained. Obviously, these are the same products that also appear in the reactions with only NH_3 or N_2O , namely $Fe_4(NH)^+$, $Fe_4(NH)_2^+$, $^{(7)}$ or $Fe_2O_2^+$, $Fe_3O_m^+$ (m=1-3). In addition, mixed stoichiometrical as $Fe_2O(NH)^+$, $Fe_3O(NH)^+$, $Fe_3O(NH)^+$, $Fe_3O_2(NH)^+$, and $Fe_3O(NH)_x^+$, are observed. In analogy to the $Fe_xO_x^+$ clusters, mixed $Fe_xO_m(NH)_{x-m}^+$ product ions appear unable to activate any further N_2O or NH_3 . Those ions persist with a mere physisorption of intact ammonia.

Of all observed products in the upper part of Figure 8, the appearance of the Fe₂O(NH)⁺ ion is most remarkable. This ion could result from a reaction of Fe₃O⁺ with NH₃, accompanied by the loss of an Fe atom. Since Fe₄⁺ attaches NH from NH₃ without Fe atom loss,^[7] Fe₂O₂⁺ was mass-selected and NH₃ introduced through a pulsed valve to clarify the origin of the Fe₂O(NH)⁺ ion. The startling result is that it emerges from a ligand exchange process (lower part of Fig. 8)! NH₃ displaces an O ligand, attaching the isosteric NH and expelling H₂, which binds the former O ligand to produce an H₂O molecule. Since only exothermic reactions occur spontaneously in the gas phase, the observed H₂O formation must be

Microoxides of Iron 598–603

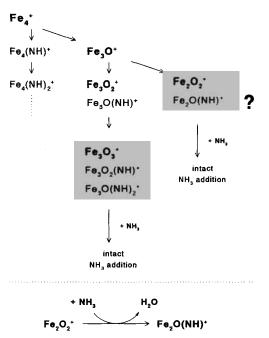
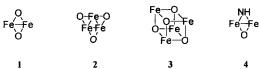



Fig. 8. Top: Products observed when Fe_4^+ is stored in the presence of NH_3 and N_2O . Bottom: Ligand exchange of mass-selected $Fe_2O_7^+$ with NH_3 .

exothermic. Otherwise, if H_2 were abstracted together with an O atom, the ligand exchange would have to be endothermic. This process is also surprising because naked Fe_2^+ clusters are unable to activate NH_3 . The exchange of an oxo with an imido ligand has been observed previously at the Fe^+ ion by Freiser and coworkers. [20] Furthermore, it is evident in our studies that the $Fe_3O_3^+$ ion does not undergo such a ligand exchange reaction.

Further understanding may be gained from knowledge of the geometric or electronic structure of the Fe_xO_x⁺ ions. Recently, Castro et al. reported density-functional calculations for Fe_n, Fe_n⁺ and Fe_n⁻ clusters of sizes $n \le 5$.^[21] They obtained lowest-energy structures for maximum numbers of nearest-neighbour bonds. To our knowledge, similar data on the bonding of oxygen to transition-metal clusters are not available. Therefore, it is appropriate to look at common coordination chemistry that suggests an O-atom-bridging type of bonding.[22] This is also backed up by the Fe_n-O⁺ BDEs we determined as roughly 550 kJ mol⁻¹ (Fig. 6) that are significantly higher than the monomer Fe-O⁺ value of around 350 kJ mol⁻¹.^[4] From this resoning, we deduce structures 1 and 2 (Scheme 1), which had already been predicted by Jacobson and Freiser. [3] The cubanelike structure 3 is well-known for M_4S_4 species (M = Mo, Fe, Co) and may therefore be predicted for Fe₄O₄⁺ as well, although a μ_3 -bridging O atom has been reported in coordination chemistry only for a rhenium complex. [22,23] Based on the assumed planar structures 1 and 2, a single C₆H₆ ligand may be added by a loose coordination with its π -electron cloud parallel to the oxide plane. The fact that Fe₂O₂⁺ binds up to two C₂H₂ ligands may be explained by the coordination of a single ligand to each Fe atom. The experimental finding that only one NH ligand exchanges with a bridging O atom and leads to molecule 4 is not yet understood. The inert behaviour of Fe₃O₃⁺ (2) may be due to

Scheme 1. Structures assumed for oxidised iron cluster cations.

both electronic and geometric factors. On one hand, each Fe atom in 2 possesses two metal—metal bonds and on the other hand, the O-atom bridges in 2 screen a larger part of the metal centre than those in 1 do. As mass spectrometry does not provide direct structural information and calculations on metal cluster ion reactions are not available yet, we are left to mere speculation.

Experimental Procedure

Details of the experimental setup have already been described [24]. Briefly, bare metal cluster cations were produced by sputtering a metal target with Xe+ primary ions at about 20 keV kinetic energy. They were injected into the storage cell of our FT-ICR instrument through an electrostatic lens arrangement. Altering the potential of a front grid allows the controlled admission of metal cluster ions to the cell. In the experiments described here, the ICR cell was usually filled for about 2 s and Ne gas was pulsed in through a piezoelectric valve to decelerate and cool the clusters. The complete ensemble of stored Fe_n^+ cluster ions contained the sizes n=3-19[10]. In the subsequent period, the clusters underwent collisions with the rare gas atoms forming a heat sink at roughly room temperature and finally achieved thermal equilibrium [18]. Before investigation of their chemistry, clusters were size-selected by removal of all undesired sizes by means of wide-band radio-frequency ejection pulses. Reactant gases were generally admitted by raising the background pressure of less than 10-9 mbar up to a given steady-state value through a continuous leak valve. A pulsed valve was used for this purpose only in special cases. After a reaction delay an excitation pulse followed and initiated detection of all ions present in the cell.

For the determination of reaction rate constants, size-selected clusters were stored in the presence of O_2 (6×10^{-9} mbar), N_2O (2×10^{-8} mbar) or CO_2 (1×10^{-7} mbar) for up to 90 s. Relative rate constants were calculated from the decrease of Fe_n^* cluster intensities, assuming pseudo-first-order kinetics. From these, we obtained absolute reaction rates by measuring the partial pressure of the reactants with a calibrated ionisation gauge [25]. Mainly because of the uncertainty of this pressure determination, the error in the absolute reaction rates is estimated to be about $\pm50\,\%$. Reaction pathways were obtained by monitoring product ion intensities as a function of storage time.

Acknowledgements: This work was generously supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Received: May 26, 1995 Revised version: September 12, 1995 [F138]

- See for example: D. C. Parent, S. L. Anderson, Chem. Rev. 1992, 92, 1541; A. Kaldor, D. M. Cox, M. R. Zakin, Adv. Chem. Phys. 1988, 70, 211.
- [2] D. Schröder, H. Schwarz, Angew. Chem. Int. Ed. Engl., 1995, 34, 1973
- [3] D. B. Jacobson, B. S. Freiser, J. Am. Chem. Soc. 1986, 108, 27.
- [4] S. K. Loh, L. Lian, P. B. Armentrout, J. Chem. Phys. 1989, 91, 6148.
- [5] B. C. Guo, K. P. Kerns, A. W. Castleman, Jr., J. Phys. Chem. 1992, 96, 6931.
- [6] M. Andersson, J. L. Persson, Nanostruct. Mater. 1993, 3, 337.
- [7] M. P. Irion, P. Schnabel, J. Phys. Chem. 1991, 95, 10596.
- [8] O. Gehret, M. P. Irion, Chem. Phys. Lett., in press.
- [9] P. Schnabel, K. G. Weil, M. P. Irion, Angew. Chem. 1992, 104, 633; Angew. Chem. Int. Ed. Engl. 1992, 31, 636.
- [10] A. Selinger, P. Schnabel, W. Wiese, M. P. Irion, Ber. Bunsenges. Phys. Chem. 1990, 94, 1278.
- [11] P. Langevin, Ann. Chim. Phys. 1905, 5, 245; G. Gioumousis, D. P. Stevenson, J. Chem. Phys. 1958, 29, 294.
- [12] M. M. Kappes, R. H. Staley, J. Am. Chem. Soc. 1981, 103, 1286.
- [13] CRC Handbook of Chemistry and Physics (Ed.: D. R. Lide), Boston, 1991.
- [14] M. R. Sievers, P. B. Armentrout, J. Chem. Phys. 1995, 102, 754.
- [15] L. Lian, C.-X. Su, P. B. Armentrout, J. Chem. Phys. 1992, 97, 4072.
- P. B. Armentrout, L. F. Halle, J. L. Beauchamp, J. Chem. Phys. 1982, 76, 2449;
 P. B. Armentrout, Annu. Rev. Phys. Chem. 1990, 41, 313.
- [17] S. K. Loh, E. R. Fisher, L. Lian, R. H. Shultz, P. B. Armentrout, J. Phys. Chem. 1989, 93, 3159.
- [18] P. Schnabel, M. P. Irion, K. G. Weil, Ber. Bunsenges. Phys. Chem. 1991, 95, 197
- [19] P. Schnabel, M. P. Irion, Ber. Bunsenges. Phys. Chem. 1992, 96, 1101.
- [20] S. W. Buckner, J. R. Gord, B. S. Freiser, J. Am. Chem. Phys. 1988, 110, 6606.
- [21] M. Castro, D. R. Salahub, Phys. Rev. B 1994, 49, 11842.
- [22] C. Elschenbroich, A. Salzer, Organometallchemie, Teubner, Stuttgart, 1993.
- [23] E. L. Muetterties, T. N. Rhodin, E. Band, C. F. Bruckner, W. R. Pretzer, Chem. Rev. 1979, 79, 91.
- [24] M. P. Irion, A. Selinger, R. Wendel, Int. J. Mass Spectrom. Ion Processes 1990, 96, 27.
- [25] J. E. Bartmess, R. M. Georgiadis, Vacuum 1983, 33, 149.